
MUCOOL Note 0117               H. Wang,       Analytical Approach to the Short-range Wakefield….

1/31

Analytical Approach to the Shor t-range Wakefield between Two
Conducting Plates Generated by a Sub-relativistic Beam Bunch

Haipeng Wang∗

Center for Accelerator Physics
Brookhaven National Lab

Building 901A, Upton, NY11973

Abstract

The muon cooling channel design requires a full space charge and wakefield effects
included in the beam dynamic simulation. The worst problem may happen when the sub-
relativistic (β=v/c<1) muon beam bunch is inside of RF cavities. To understand the short-
range wakefield and crosscheck with MAFIA simulation, an analytical approach by
image charge algorithm has been developed for the geometry of two parallel planner
conductors. This paper gives all details of physics and mathematics in the
electromagnetic field generation, propagation, reflection and causality issue. The
calculated wakefield results have an excellent agreement with MAFIA simulation within
a broad range of β  [5].

1. Introduction

    Current muon ionization cooling design for a muon collider or a neutrino factory requires a full space
charge and wakefield effects included in the beam dynamic simulation. The worst problem may exist when
the sub-relativistic muon beam bunch (β=v/c<1) is inside of RF acceleration cavities. The baseline design
for the cavity shape is to close the cavity irises by the low Z (which gives less muon scattering) metal
conductors (which gives higher shunt impedance). The choice is either the beryllium foil window type [1]
or the thin tubes grill type [2]. Whichever is closed to a pillbox type cavity. The transverse space-charge
force of the dense beam may reduce the cooling effect. The wakefield may also act on the bunch tail itself.
However, this effect has not implemented in the ICOOL [3] simulation yet, because there was a
fundamental problem has to solve. That is how to calculate the Coulomb field and wakefield when the sub-
relativistic beam bunch is still inside of RF cavity. MAFIA codes [4] are able to do the job, but exports
only believe the wakefield calculation for the ultra-relativistic beam (β=1) and in the long-range when the
beam bunch already left the cavity.  There is no any analytical tool suitable to crosscheck the MAFIA
simulation in short-range for the sub-relativistic beam [5]. Under this motivation, we found the image
charge algorithm is very simple in mathematics and very clear in physics and is a very powerful and
interesting tool. The short-range wakefield is dominated by the path length of first a few reflected waves
within the cavity. Current 805 MHz beryllium window cavity has a gap distance 7.821cm and a radius
14.28cm, so the short-range waves only depend on the gap distance and reflect between two planner walls.
It is a perfect example for exploring the short-range wakefield problem. This development is based on the
geometry of two parallel plane conductors and the foundation works of Chao [6][7], Carron [8] and
Maresca [9].

2. Sub-relativistic Waves in One-plane Model

    Electromagnetic fields generated by a sub-relativistic point charge moving out from an infinite large,
planar and perfect-conducting plane can be deduced from Carron’s note [8] in cylindrical (r,φ, z)
coordinates:
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Here

222 /)( γβ rzcts +−≡−                                                                                                                      (4)

222 /)( γβ rzcts ++≡+                                                                                                                      (5)

And

22 zr +≡ℜ                                                                                                                                            (6)

    The positive source particle moves on z-axis and out of conducting surface at z=0, with a relative

velocity of β =v/c, c is the speed of light. 211 βγ −= .

All fields are independent in azimuthφ. Each field component consists of three terms. The terms with the
Heaviside step function u(ct-ℜ ) represent Coulomb fields generated by a positive source charge and a
negative image charge. Two charges are moving in opposite direction relative to the mirror plane. The third
term with the Delta function δ(ct-ℜ ) represents the radiation field. We note that the radiation field only
rides on the spherical wavefront, and the Coulomb field resides between the conducting plane and the
wavefront. The wavefront originates at (r, z)=(0, 0), with the radius of ct, and expends homogeneously in
the speed of light c. The charge particle moves in the velocity of βc, behind the radiation wavefront.
Coulomb field surrounds the source particle and propagates with it, but its scope expends with the radiation
wavefront. We call the electromagnetic field in term of Coulomb and radiation. Because the Coulomb field
has the character of field strength e (or b) ∝  1/L2. The L is the distance between the source and the field
point interested. The radiation field has e (or b) ∝  1/L. As the particle approaches in relativistic (β=1), the
Coulomb field vanishes and only the radiation field left. The charge particle is just riding on the wavefront.
In opposite, as the particle stays in static (β=0), the radiation and magnetic fields disappear. Only Coulomb
field left, is in the form we knew.
    In principle, a charge particle could not move out or move in a perfect conductor due to the image charge
effect. In other words, the image current in the conducting plate is infinite high when the source charge is
touching the plane. There is a repelling force to prevent the source particle moving to the interception point.
In reality, the conductivity of the conducting plate is always finite. Also the source particle moves with a
finite energy. If the conducting plate is a thin wall, an energized particle can always pass through the
conductor plane. In the mathematics, the image charge method always assumes the electric mirror is a
perfect conductor plane. There is a singularity at the interception points. We can avoid this problem by
excluding these points in the field integration.

3. Sub-relativistic Waves in Two-plane Model
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    We now consider a point source charge moving between two conducting planes. Before the radiation
wavefront reaches the second conductor plane, there is no new physics from the one-plane model. The
information from the second plane has not received yet. After the wavefront strikes the second conductor
plane, a new two-plane model need to develop. There are three additional terms (physics points) to add into
Carron’s field expression (1)-(3).

1) A backward radiation when the source charge exiting out to the second plane.

2) A reflected wave first bounces back from the second conductor plate. As the spherical waves
propagated, multiple refection waves will be superimposed. The reflected waves can be represented by
the infinite numbers of image charges generated fields originated at different locations. Illustrated in
Fig. 1, we can use z+2ig to replace the z in Eqs. (4)-(6) to represent the reflected Coulomb and forward
radiation fields.  Use z-g-2ig to replace the z in Eq. (6) to represent the reflected backward radiation
fields. Here i=0, -1, +1, -2, +2…. The forward means the primary radiation wavefront is in +z
direction. The reflected waves can be either +z or –z direction. For example, the first reflected forward
radiation is in –z direction, and second reflected forward radiation is in +z direction. The sequence of
terms in i=0, -1, +1, -2, +2… also represents the wave front appearance sequence between the two
conducting planes. For example, i=0 is a primary wave. i=-1 is first reflected wave, and i=+1 is second
reflected wave. These wavefronts are generated at same time but originated at different z positions.
The separation of these origins is 2g. According to the new modifications, the s- and s+ become to si-

and si+, the ℜ  becomes ℜ i+ and ℜ i-.

3) There is no Coulomb field emitted after the source particle left the second plane. So there is a
disappearance term attached to the Coulomb field expression.

forward

pr imary forward

1st reflected

i=+1, forward

reflected

i=0, backward

primary

backward

1st reflected

First snapshot in magenta

when source charge is here when source charge is here

snapshot

when source charge is here

Figure 1: Electromagnetic waves generated by a sub-relativistic charge moving through two conducting
plates. The wavefront pictures are taken at three different snapshots (in colors: first, magenta; second, blue;
third, red).
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z

Figure 2: Blow-up view of Fig.1 between two conducting plates.

Now the field expression can be written as in Eqs. (7)-(9).
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Here g is the distance between the two conducting planes.

222 /)2( γβ rigzctsi +−−≡−                                                                                                        (10)

 222 /)2( γβ rigzctsi +++≡+                                                                                                       (11)

22 )2( igzri ++≡ℜ +                                                                                                                         (12)

22 )2( gigzri −−+≡ℜ −                                                                                                                 (13)

Now we want to use the normalized parameters and define:

rr e
q

g
E

2
04πε

≡       zz e
q

g
E

2
04πε

≡       φφ
πε

b
q

cg
B

2
04

≡                                                          (14)

g

r
R ≡     

g

z
Z ≡       

g

ct
cT ≡                                                                                                                 (15)

22 )2( iZR
g

R i
i ++=

ℜ
≡ +

+       22 )12( −−+=
ℜ

≡ −
− iZR

g
R i

i                                        (16)

222 )2( iZcTR
g

s
S i

i −−+=≡ −
− βγγ  222 )2( iZcTR

g

s
S i

i +++=≡ +
+ βγγ             (17)

Use the relationship:

222222 /)2()2( γβ iZRiZRi ++=+−+                                                                                         (18)

222222 /)12()12( γβ −−+=−−−− iZRiZRi                                                                             (19)

Substituting (14)-(19) in equation (7)-(9), we obtain
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In Eq. (20), we brace out the terms in the early definition. The summations over all i terms take care of all
reflected fields.

    We now can see the electric field profile “movies”  in Z-R coordinate generated by Mathcad. For all
plots, the arrow at each grid only represents the electric field direction at that point. All arrows have same
length, so each electric field vector is normalized at each grid. The left and right boundaries of the plot are
the positions of the first and second conducting planes. The source charge moves at a velocity of β=0.84. In
order to show the spherical wavefronts clearly the thickness of the wavefronts have been arbitrarily set into
a 1% of the gap distance.
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Figure 3: In this frame, at T=0.75/c, the red dot represents the positive source charge position.

Figure 4: In this frame, at T=1.2/c, the positive charge is just striking the second conducting plate. The first
reflected wave has shown up, a negative image charge represented its source just cancels the positive image
charge created at this point for a backward radiation wave. So there is no net image charge coming back
after this moment.

Electric vector plot at T=0.75/c

Electric vector plot at T=1.2/c
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Figure 5: In this frame, at T=1.5/c, Coulomb filed lost its information within the backward radiation
wavefront. All first-reflected field lines have to return to second conducting plate through the backward
radiation field lines due to no image charge present here.

Figure 6: In this frame, at T=2/c. backward radiation propagates to the left, left a field vacuum behind.

Electric vector plot at T=1.5/c

Electric vector plot at T=2.0/c
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Figure 7: In this frame, at T=2.5/c, second-reflected forward radiation wave and first-reflected backward
radiation wave have shown up.  The Coulomb field has moved to up-left corner.

Figure 8: In this frame, at T=3.5/c, only reflected radiation waves left.

Electric vector plot at T=2.5/c

Electric vector plot at T=3.5/c
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4. Green’s Function of Wake-potential

    So far, we have only worked on the point charge generated wakefields. A witness particle following the
source particle to see its wakefields to gain or lose energy is the wake-potential. The integration of the
wakefields calls Green’s Function of Wake-potential.

The longitudinal wake-potential is:

dz
c

sz
tzresrw

g

z ),,(),(
0

// ∫
+==
βδ                                                                                                       (23)

The transverse wake-potential can be expressed as:
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As the conventional definition, s>0 is the distance of witness particle behind source particle, s<0 is the
distance of witness particle ahead of source particle. wδ//>0 means a positive witness charge is accelerated,
wδ//<0 means decelerated. wδ⊥ >0 means a positive witness charge is defocused, wδ⊥ <0 means focused.

Now we define normalized wake-potential and normalized distance:
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The normalized longitudinal wake-potential is:
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The normalized transverse wake-potential is:
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When we integrate the field (26) and (27) analytically over the step functions and the Delta functions, there
is a causality issue. That is when the witness particle starts seeing the source particle generated fields, and
when the witness particle stops seeing the fields (Of course, you can do the integration numerically to avoid
the problem). In Appendix A, we demonstrated in detail how to do the integration analytically, in which,
gives more clearly physical picture of the causality issue. Since the algebra is very complicated, we only
show the result plots here. Interesting readers can refer to Appendix A for causality algorithm and
Appendix B for a Mathcad programming.
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Figure 9: Short-range longitudinal wake-potential generated by a positive point charge moving (with
β=v/c=0.84) between two conducting plates. Here R is the ratio of particle off-axis distance to the plate
gap.

Figure 10: Coulomb and radiation wake-potentials shown separately for the case of R=0.1.



MUCOOL Note 0117               H. Wang,       Analytical Approach to the Short-range Wakefield….

12/31

Figure 11: Short-range transverse wake-potential generated by a positive point charge moving (with
β=v/c=0.84) between two conducting plates. Here R is the ratio of particle off-axis distance to the plate
gap.

Figure 12: Coulomb and radiation wake-potentials shown separately for the case of R=0.1.
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5. Wake-potential of a Gaussian Bunch Beam:

    Once we know the Green’s function of the wake-potential wδ(s), we can integrate it to get the wake-
potential for any given bunch distribution λ(r,t). A convenient definition is a line charge distribution in
longitudinal direction with a total chare q:

)()(),,,( sqzctqtzr λβλφρ =−=                                                                                                     (28)

For a Gaussian bunch with charge density distribution:
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Here, σ is the beam RMS bunch length.

The wake-potential is given by

112

2
10

111 )(
2

)(
exp

2

1
)()()( dssw

sss
dsswsssw δδ σπσ

λ ∫∫
+∞

∞−

+∞

∞−





 −−
−=−=                               (30)

Please pay attention here, the lower integration limit is -∞, not a zero. That is the character of sub-
relativistic wakefield. The radiation field can be ahead of the moving particle. The wake-potential has to
count that contribution.

    Now we use normalized parameters defined above, but redefine the relative coordinate S′ normalized to
the bunch length σ  and a relative bunch length ∑ normalized to the gap distance g.
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The normalized longitudinal wake-potential for a Gaussian beam bunch is:
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The normalized transverse wake-potential for a Gaussian beam bunch is:
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Then short-range wake-potential longitudinal (32) and transverse (33) for different off-axis distance R can
be computed by a third Mathcad program (see Appendix B for detail). Following plots show the examples
with S’ 0=5, ∑=0.1918 case.  It is a simulation of a bunched muon beam (with β=0.84, σ=1.5cm) in an 805
MHz pillbox cavity (with radius=14.28cm, g=7.821cm) in the muon cooling cannel for a muon collider.
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Figure 13: Normalized longitudinal wake-potential for a Gaussian beam bunch with β=0.84, s0=5σ, and
σ/g=0.1918 for witness particle at different off-axis distances R=r/g.  The charge density is multiplied by
10 in order to see the bunch shape in the graph scale.

    The results Figs. (13) and (14) can be readily compared with MAFIA 3D and 2D codes or other
wakefield calculation code like ABCI (2D) [5]. The comparisons can also validate these codes in short-
range wakefield calculation.

6. Conclusions

    The image charge algorithm is a very powerful and fundamental tool to analytically calculate the short-
range wakes reflected between two conducting plates when a sub-relativistic beam passing through them. It
provides a key to understand physical picture of both space charge and wakefield problems when a short
beam bunch is inside of a RF cavity though we do not consider the beam dynamic with RF field here. It
shows a very good agreement with MAFIA and ABCI simulation codes in the short-range wakefield
calculations for a broad range of particle velocity [5]. This is the first analytical approach to validate those
wakefield calculation codes in such a short-range. We have also leaned that the frequency mode analysis
technique already proofed the MAFIA wakefield calculation in long-range. This long-range so far
experienced is beyond the distance when the witness particle passes the 8σ of Gaussian bunch if the bunch
starts from –5σ, or when the radial reflected wave reaches the witness particle, whichever is shorter. That
means MAFIA (2D or 3D) is a very trustful tool to simulate the wakefield or impedance problem in any
range for a complex beam component structure.
    The image charge algorithm may not suit for a pipe-like structure, in which the cylindrical radius is
much smaller than the longitudinal gap distance. In this case, the witness particle may first see the reflected
waves from the radial wall instead of planar wall. The current method only applies to the planar mirror but
not to the cylindrical mirror. The image charge method for the cylindrical mirror is very cumbersome.
Because a single image ring charge relative to a source ring charge on axis could not satisfy the boundary
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Figure 14: Normalized transverse wake-potential for a Gaussian beam bunch with β=0.84, s0=5σ, and
σ/g=0.1918 for witness particle at different off-axis distances R=r/g.  The charge density is multiplied by
10 in order to see the bunch shape in the graph scale.

condition on the cylindrical surface. Even with a stack of image ring charges, the dynamic wavefronts from
these image charges, when intercepting with the primary wavefront from the source charge on the mirror
surface, may not exactly cancel each other. Even with reasonable numbers of reflected wavefronts, the
mathematical expression for each wavefront is not as simple as in the point charge case. In this case, the
diffraction method [10] could be used, but works done so far are only for the relativistic particle in long-
range wakefield or impedance calculations. Anyhow, for a pipe like structure and for the sub-relativistic
particle, we can rely on the MAFIA numerical simulation.
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Appendix A. Causality Issues in Wakefield Integration

    When we analytically integrate (26) and (27), there are two Heaviside step functions u(cT-Ri+), u(R0--
cT+1/β), and two Delta functions δ(cT-Ri+), δ(cT-1/β-Ri -) need to be taken care of.  For the Coulomb filed
integration, we are dealing with the step functions, for example, you can only drop u(cT-Ri+) and u(R0--
cT+1/β) terms in the integration formula when the conditions cT-Ri+ > 0 AND R0--cT+1/β > 0 satisfies. By
making transformation cT=(Z+S)/β, we found the field is nonzero value only when Z and S are in certain
range. That gives the integration limits extra conditional constrains. From the analysis shown later, we
should find out that there are “open windows”  for the witness particle to see the source particle Coulomb
fields. Because the term cT-Ri+ > 0 turns the field on, or the witness particle starts to see the retarded field
of the source particle. Thus the term R0--cT+1/β < 0 i.e. cT-R0--1/β > 0 turns the field off, or the field inside
of the conducting planes varnished after the source particle left the second conducting plane.  This is the
general causality issue and concept we discussed about.

    Let’s work on the appearance term, by solving the inequality:

0>− +iRcT                                                                                                                                            (A1)

The discriminant is

( )
�always

R
iS 024

2

2
22 ≥








+−=∆

γ
β                                                                                                            (A2)

We got the solutions:

( ) ),,(2)2( 12

2
222 iRSZ

R
iSSiZ ≡












+−+−>

γ
ββγ     i.e.    ),,(1 iRSZZ >                      (A3)

OR
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( ) ),,(2)2( 22

2
222 iRSZ

R
iSSiZ ≡












+−−−<

γ
ββγ     i.e. ),,(2 iRSZZ <                       (A4)

Remember the transformation

0
always

≥+=
β

SZ
cT                                                                                                                                    (A5)

We can define the

SSZ −=)(9                                                                                                                                               (A6)

The (A5) means Z>Z9(S). The functions of Z1(S,R,i), Z2(S,R,i) and Z9(S) can be drawn in a Z-S plot by
Mathcad in Figure 15. We can conclude that Z2(S,R,i) does not have any physical meaning. That applies to
any R and i.

Figure 15: Work on the Z-S plot to determine the branch limit on appearance term (i=-1, β=0.86, R=0 or 1).

    Let’s work on the disappearance term, by solving the inequality:

0
1

0 >+−− β
cTR                                                                                                                                   (A7)

The discriminant is
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	always
R

S 04
2

2
22 ≥





+=∆

γ
β                                                                                                                       (A8)

We got the solution:

),(11),( 6
22222222

5 RSZRSSZRSSRSZ ≡++−<<+−−≡ γβγγγβγγ
    i.e.    ),(),( 65 RSZZRSZ <<                                                                                                          (A9)

Remember that the backward radiation only happens after the source particle exiting the second plate. So

ββ
1>+= SZ

cT                                                                                                                                    (A10)

We can define

SSZ −=1)(10                                                                                                                                        (A11)

The functions of Z5(S,R), Z6(S,R) and Z10(S) can be drawn in a Z-S plot by Mathcad in Figure 16. We can
conclude that Z5(S,R) does not have any physical meaning either. That applies to any R.

Figure 16: Work on the Z-S plot to determine the branch limit on disappearance term (β=0.86, R=0 or 1).

Remember that we are only interested in the fields between the two conducting plates, i.e. Z=0 to 1 range.
We now define:

03 =Z                                                                                                                                                      (A12)
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And

14 =Z                                                                                                                                                      (A13)

    On the Z-S plot, let’s work on the solution areas for the appearance term and disappearance term. We
have found only functions Z1(S,R,i), Z6(S,R,i) have physical meanings. Because any radiation wavefront
shown between the conducting planes is only half sphere.  In order to see the Coulomb field within the
forward radiation wavefront and beyond backward radiation wavefront, the witness particle is always in
favor of +S side. That means the witness particle behind the source particle is always easy to see the most
portion of Coulomb field left behind source particle.  So we only take (A3) and (A9, right) for the solution.
However, for a small β or R, the Z1(S,R,i) still can be on –S side. Because the radiation can catch the slow
witness particle before it moves out of second plane.
    For the appearance terms, the interception points between Z3 and Z1(S,R,i) can be obtained analytically
by solving Z1(S,R,i)=0 :

22
31 4),,( RiiRS += ββ                                                                                                                 (A14)

The interception between Z4 and Z1(S,R,i):

22
41 )12(1),,( RiiRS +++−= ββ                                                                                              (A15)

For the disappearance terms, the interception between Z3 and Z6(S,R) can be obtained analytically by
solving Z6(S,R)=0:

2
36 11),( RRS ++= ββ                                                                                                                  (A16)

The interception between Z4 and Z6(S,R):

RRS ββ =),(46                                                                                                                                     (A17)

The condition (A3) AND (A9, right) requires to find a common area in Z-S plot between the lines from Z1

to Z6 in S and from Z3 to Z4 in Z.  The Figure 17 shows this common area for β=0.86 example, an “open
window”  for witness particle to see the Coulomb field in source term (i=0). At the –S side of Z-S plot, there
is a possibility to have a window area, like Figure 18, β=0.4 case.
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RS β=46

1)12( 22

41 −++= RiS β

22

31 4 RiS += β

11 2

36 ++= RS β

Figure 17: The “open window”  in Z-S plot for β=0.86, i=0.

From Figures 17, 19 and 20, we can see that as the i  goes up, i.e. i=0, -1, +1, -2, +2…, the window area

becomes smaller and smaller. After a certain i  value, the window disappears. The condition for the

window disappearance is when:

 3631 SS >     i.e.     222 114 RRi ++>+ ββ                                                                           (A18)
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Figure 18: The “open window”  in Z-S plot for β=0.4, i=0.

The solution of the (A18) is:

ββ

2

2

121
1

2

1 R
i

+++>                                                                                                                (A19)

From (A19), we can see that as the β decreases, or as the source particle becomes more static, the |i|
requires to increase. That means the window numbers seen by the witness particle becomes larger, or the
witness particle sees more reflected static fields. When the off-axis distance R increases, the window
numbers becomes larger too.

    Next, we are going to determine the window dimensions. That is to determine the integration low and
high limits for  (26) and  (27).

The integration limits can be divided into different areas. When

4641 SS ≤     i.e.    RRi ββ ≤+++− 22)12(1                                                                             (A20)

AND

 363146 SSS ≤≤    i.e.    222 114 RRiR ++≤+≤ βββ                                                         (A21)

satisfied, the integration limits becomes three areas. The first area is from Z1 to Z4=1. The second area is
from Z1 to Z6. The third area is from Z3=0 to Z6.
The solution for  (A20) AND (A21) are
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β
βR

i
21

12
+

≤+                                                                                                                                (A22)

Figure 19: The “open window”  in Z-S plot for β=0.86, i=-1.

Figure 20: The “open window”  in Z-S plot for β=0.86, i=1.
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AND

ββ

2

2

121
1

2

1 R
i

+++≤                                                                                                              (A23)

We can see that when S31=S46, i=0, which is the special case (two areas) of three areas solution.

When the (A20) changes the sign direction, that is

4641 SS >     i.e.    RRi ββ >+++− 22)12(1                                                                             (A24)

AND (A21) conditions satisfied, the integration limits reduced into two areas. The first area is from Z1 to
Z6. The second area is from Z3=0 to Z6.

The integration limits or window dimensions for Coulomb fields can be summarized in Table 1.

lowS highS lowZ highZ Conditions

1)12( 22 −++ Riβ Rβ
1Z 1

Rβ 224 Ri +β 1Z 6Z

224 Ri +β 11 2 ++ Rβ 0
6Z

β
βR

i
21

12
+

≤+  AND

ββ

2

2

121
1

2

1 R
i

+++≤

X#
224 Ri +β 1Z 6Z

224 Ri +β 11 2 ++ Rβ 0
6Z

β
βR

i
21

12
+

>+  AND

ββ

2

2

121
1

2

1 R
i

+++≤

No Windows Appear
ββ

2

2

121
1

2

1 R
i

+++>

Table 1:  "Open window" dimensions of witness particle to see the source particle Coulomb field in the Z-S

plot. Here ( )











+−+−=

2

2
222

1 2)2(
γ

ββγ R
iSSiZ and 2222

6 1 RSSZ ++−= γβγγ .

    Now we can integrate the Coulomb field term by term.

The Coulomb wake-potential is

∑
−=

−=
j

ji
lowChighCC ZFZFSRW )()(),( //////

        See condition in the shaded area in Table 1                (A25)

                                                       
#  X is the root of the equation 61 ZZ = .
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Here 










 +++=
ββ

2

2

121
1

2

1
integer

R
j                                                                                     (A26)

 That means you do not need to calculate so many terms for a fast particle.

And F//C(Z) is the integration function of Coulomb field EZC, and it was found out

( )[ ] ( ) 





î





+++
+

−+

−=
22222

3
222

//

222

1

2

2
)(

iSZR
Z

iSR

Si
ZF C

γγγ
γ                                 (A27)

    The radiation fields (forward and backward) are just one-time contribution to the wake-potential at their
wavefronts. The integration over the radiation fields is similar to but simpler than the Coulomb fields. We
can solve the forward radiation wavefront position Z1 by putting equal sign into (A1) and getting












+−+−=

2

2
222

1 )2()2(),,(
γ

ββγ R
iSSiiRSZ                                                                       (A28)

OR












+−−−=

2

2
222

2 )2()2(),,(
γ

ββγ R
iSSiiRSZ                                                                      (A29)

We know that only Z1(S,R,i) has a physical meaning.

In a similar way, we can solve the backward radiation wavefront position Z7 by

0
1 =−− −iRcT
β

                                                                                                                                  (A30)

We get












++−+−−=

2

2
22

2
2

7 )2(2
1

),,(
γ

ββ
γ

γ R
iSiSiRSZ                                                             (A31)

OR












++++−−=

2

2
22

2
2

8 )2(2
1

),,(
γ

ββ
γ

γ R
iSiSiRSZ                                                             (A32)

In a similar way to work on the Z5(S,R), from Figure 21, we can rule the Z8(S,R,i) out , which does not have
any physical meaning.
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It is obviously that Z8(S,R,0)=Z5(S,R) and Z7(S,R,0)=Z6(S,R). So Z7(S,R,i) is the backward radiation
wavefront positions in general for any R and i.

The interception between Z7(S,R,i) and Z3=0 can be found

2
37 1)1(41 RiiS ++++= β                                                                                                           (A33)

The interception between Z7(S,R,i) and Z4=1 can be found

22
47 4iRS += β                                                                                                                               (A34)

Figure 21: Work on the Z-S plot to determine radiation wavefront position. In this example, β=0.86, i=-1.

We can see that 




0),,(

always

47 ≥iRS β . That means the witness particle ahead of the source particle could

not see any backward radiation. That is because when the backward radiation generated, the witness
particle already left the second plate. The radiation wavefront positions can be summarized in Table 2.

The radiation wake-potential is:










î






++≤≤+Φ+
+≤≤−++Φ

=

Others

RiSRiifZ

RiSRiifZ
SRW

B

F

R

0

)12(4)(

41)12()(
),( 2222

7//

2222
1//

// ββ
ββ

                        (A35)

Here  Φ//F(Z) is the integration function of forward radiation field EZF.
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( )
∑
∞

−∞=
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 ++++

−=Φ
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2
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                   (A36)

And Φ//B(Z) is the integration function of backward radiation field EZB.

( )
∑
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β            (A37)

    You do not need so many terms to calculate short-range radiation potentials either. A simple way to
estimate it is to look at how many forward radiation and its reflection wavefronts have shown up between
the parallel plates within the defined S range. Since the forward radiation always happens first, though its
reflections may come later than the backward radiation, the forward radiation always starts with i=0 wave
first. We require that

lowSS ≥ i.e. 1)12( 22 −++≥ RiS β                    (A38)

We got

2

11

2

1 2

2

−−




 +≤ R
S

i
β

                                                                                                                (A39)

 lowS highS wavefrontZ Note

1)12( 22 −++ Riβ 224 Ri +β 1Z Forward radiation

224 Ri +β 22)12( Ri ++β 7Z
Backward radiation

Others No radiation can be seen

Table 2: Radiation wavefront positions. Here ( )

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
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+−+−=
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7 22
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γ
ββ

γ
γ R

iSiSZ .

    The total longitudinal wake-potential is the sum of the Coulomb and radiation potentials.

),(),(),( ////// SRWSRWSRW RC +=                                                                                                (A40)

In a similar way, we can get total transverse wake-potential

),(),(),( SRWSRWSRW RC ⊥⊥⊥ +=                                                                                                 (A41)
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∑
−=

⊥⊥⊥ −=
j

ji
lowChighCC ZFZFSRW )()(),(            See the condition in the shaded area in Table 1        (A42)
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 +++=
ββ

2

2

121
1

2

1
integer

R
j                                                                                     (A26)

And F⊥ C(Z) is the integration function of Coulomb field ErC-βBφC, and it was found out
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Here  Φ⊥ F(Z) is the integration function of forward radiation field ErF-βBφF.
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And  Φ⊥ B(Z) is the integration function of backward radiation field ErB-βBφB.
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Appendix B. A Mathcad Program for Wake-potential Calculation

Short-range Wake-potential Produced by a Sub-relativistic Gaussian Bunch Passing
through Two Parallel Conducting Plates (Green Function Integrated by Analytical
Formulas).

H. Wang, 04/10/2000

1. Longitudinal Coulomb:

β 0.84
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γ 1

1 β2

Z 1 R S, i,( ) γ 2
2 β2. i. S β S 2 i.( )2 R2

γ 2
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F llCi Z R, S, i,( ) γ 1
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2 Z. S 2 i.( )2..
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F llCi Z 6 R S,( ) R, S, i, F llCi Z 1 R S, i,( ) R, S, i, β R. S< β 4 i2. R2.<if

F llCi Z 6 R S,( ) R, S, i, F llCi 0 R, S, i,( ) β 4 i2. R2. S β 1 R2. 1if

0 otherwise
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0 otherwise
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2
1
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β
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W 0
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1 2 β. R.

β
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W

2. Longitudinal Radiation:
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Z 7 R S, i,( ) γ 2
2 β2. i. S

1

γ 2
β S 2 i.( )2 R2

γ 2
..

Φ llFi Z R, S, i,( )
2 β. R2.

R2 Z 2 i.( )2 R2 Z 2 i.( )2

γ 2
.

1

1

β
Z 2 i.

R2 Z 2 i.( )2

.

Φ llBi Z R, S, i,( )
2 β. R2.

R2 Z 2 i. 1( )2 R2 Z 2 i. 1( )2

γ 2
.

1

1

β
Z 2 i. 1

R2 Z 2 i. 1( )2

.

W llFi R S, i,( ) Φ llFi Z 1 R S, i,( ) R, S, i, β 2 i. 1( )2 R2. 1 S β 4 i2. R2.if

0 otherwise

W llBi R S, i,( ) Φ llBi Z 7 R S, i,( ) R, S, i, β 4 i2. R2. S β 2 i. 1( )2 R2.if

0 otherwise

W llR R S,( )

7

7

i

W llFi R S, i,( ) W llBi R S, i,( )

=

3. Longitudinal Total:

W ll R S,( ) W llC R S,( ) W llR R S,( )

4. Transverse Coulomb:

F trCi Z R, S, i,( )
R Z.

γ R2 γ 2
S 2 i.( )2.

1.5
.

1 β2 γ. 2 Z. S 2 i.( ).

2 R. R2 γ 2
2 Z. S 2 i.( )2..

W trC1 R S, i,( ) F trCi 1 R, S, i,( ) F trCi Z 1 R S, i,( ) R, S, i, β 2 i. 1( )2 R2. 1 S β R.if

F trCi Z 6 R S,( ) R, S, i, F trCi Z 1 R S, i,( ) R, S, i, β R. S< β 4 i2. R2.<if

F trCi Z 6 R S,( ) R, S, i, F trCi 0 R, S, i,( ) β 4 i2. R2. S β 1 R2. 1if

0 otherwise
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W trC2 R S, i,( ) F trCi Z 6 S R,( ) R, S, i, F trCi Z 1 R S, i,( ) R, S, i, X R i,( ) S β 4 i2. R2.if

F trCi Z 6 R S,( ) R, S, i, F trCi 0 R, S, i,( ) β 4 i2. R2. S< β 1 R2. 1if

0 otherwise

W trC R S,( ) j round
1

2
1

1

β2
2

1 R2

β
..

W 0

W W W trC1 R S, i,( ) 2 i. 1
1 2 β. R.

β
if

W trC2 R S, i,( ) otherwise

i j j..∈for

W

5. Transverse Radiation:

Φ trFi Z R, S, i,( )
2 β. R.

R2 Z 2 i.( )2

γ 2

Z 2 i.

R2 Z 2 i.( )2

β. 1

1

β
Z 2 i.

R2 Z 2 i.( )2

.

Φ trBi Z R, S, i,( )
2 β. R.

R2 Z 2 i. 1( )2

γ 2

Z 2 i. 1

R2 Z 2 i. 1( )2

β. 1

1

β
Z 2 i. 1

R2 Z 2 i. 1( )2

.

W trFi R S, i,( ) Φ trFi Z 1 R S, i,( ) R, S, i, β 2 i. 1( )2 R2. 1 S β 4 i2. R2.if

0 otherwise

W trBi R S, i,( ) Φ trBi Z 7 R S, i,( ) R, S, i, β 4 i2. R2. S β 2 i. 1( )2 R2.if

0 otherwise

W trR R S,( )

7

7

i

W trFi R S, i,( ) W trBi R S, i,( )

=

6. Transverse Total:

W tr R S,( ) W trC R S,( ) W trR R S,( )

7. Normalized Longitudinal Wake Potential for a Gaussian Bunch:
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S0 5
         

S0=s0/σ         Σ 0.1918         Σ=σ/g

W l R S,( )
1

2 π. 5

5

S1exp
S S0 S1

2

2
W ll R S1 Σ.,. d.

Ch S( )
1

2 π.
exp

S S0
2

2
.

8. Normalized Transverse for a Gaussian Bunch:

W t R S,( )
1

2 π. 5

5

S1exp
S S0 S1

2

2
W tr R S1 Σ.,. d.


